Logical XOR function

From Artificial Neural Network for PHP
Revision as of 12:04, 4 October 2025 by Thwien (talk | contribs) (→‎Training)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

FAQ

For information about dat-files have a view to the FAQ page.

Training

<?php
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
    $objNetwork = Network::loadFromFile('xor.dat');
} catch (Exception $e)
{
    $objNetwork = new Network();

    $objValues = new Values();

    $objValues->train()
        ->input(0, 0)
        ->output(0)
        ->input(0, 1)
        ->output(1)
        ->input(1, 0)
        ->output(1)
        ->input(1, 1)
        ->output(0);

    $objValues->saveToFile('values_xor.dat');
}

try
{
    $objValues = Values::loadFromFile('values_xor.dat');
}
catch (Exception $e)
{
    die('Loading of values failed');
}

$objNetwork->setValues($objValues);

$boolTrained = $objNetwork->train();

print ($boolTrained) ? 'Network trained' : 'Network not trained completely. Please re-run the script';

$objNetwork->saveToFile('xor.dat');

Using trained network

<?php
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
    $objNetwork = Network::loadFromFile('xor.dat');
}
catch (Exception $e)
{
    die('Network not found');
}

try
{
    $objValues = Values::loadFromFile('values_xor.dat');
}
catch (Exception $e)
{
    die('Loading of values failed');
}

$objValues->input(0, 1)
    -> // input values appending the loaded ones
input(1, 1)
    ->input(1, 0)
    ->input(0, 0)
    ->input(0, 1)
    ->input(1, 1);

$objNetwork->setValues($objValues);

print_r($objNetwork->getOutputs());