Logical XOR function: Difference between revisions

From Artificial Neural Network for PHP
 
Line 61: Line 61:
<source lang="php">
<source lang="php">
require_once 'ANN/Loader.php';
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;


try
try
{
{
$objNetwork = ANN_Network::loadFromFile('xor.dat');
$objNetwork = Network::loadFromFile('xor.dat');
}
}
catch(Exception $e)
catch(Exception $e)
Line 73: Line 76:
try
try
{
{
$objValues = ANN_Values::loadFromFile('values_xor.dat');
$objValues = Values::loadFromFile('values_xor.dat');
}
}
catch(Exception $e)
catch(Exception $e)

Latest revision as of 11:29, 1 June 2011

FAQ

For information about dat-files have a view to the FAQ page.

Training

require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
  $objNetwork = Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
  print 'Creating a new one...';
	
  $objNetwork = new Network;

  $objValues = new Values;

  $objValues->train()
            ->input(0,0)->output(0)
            ->input(0,1)->output(1)
            ->input(1,0)->output(1)
            ->input(1,1)->output(0);

  $objValues->saveToFile('values_xor.dat');
  
  unset($objValues);
}

try
{
  $objValues = Values::loadFromFile('values_xor.dat');
}
catch(Exception $e)
{
  die('Loading of values failed');
}

$objNetwork->setValues($objValues); // to be called as of version 2.0.6

$boolTrained = $objNetwork->train();

print ($boolTrained)
        ? 'Network trained'
        : 'Network not trained completely. Please re-run the script';

$objNetwork->saveToFile('xor.dat');

$objNetwork->printNetwork();

Using trained network

require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
  $objNetwork = Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
  die('Network not found');
}

try
{
  $objValues = Values::loadFromFile('values_xor.dat');
}
catch(Exception $e)
{
  die('Loading of values failed');
}

$objValues->input(0, 1)  // input values appending the loaded ones
          ->input(1, 1)
          ->input(1, 0)
          ->input(0, 0)
          ->input(0, 1)
          ->input(1, 1);

$objNetwork->setValues($objValues);

print_r($objNetwork->getOutputs());