Using date input support class: Difference between revisions
From Artificial Neural Network for PHP
No edit summary |
|||
Line 5: | Line 5: | ||
== XML for holidays == |
== XML for holidays == |
||
The standard filename is Holidays.xml but can be |
The standard filename is ''Holidays.xml'' but can be changed by calling ANN_DateInputs::setHolidaysFilename(). |
||
<source lang="xml"> |
<source lang="xml"> |
Revision as of 18:52, 6 January 2010
FAQ
For information about dat-files have a view to the FAQ page.
XML for holidays
The standard filename is Holidays.xml but can be changed by calling ANN_DateInputs::setHolidaysFilename().
<?xml version="1.0" encoding="UTF-8"?>
<holidays>
<holiday>
<day>1</day>
<month>1</month>
<year>any</year>
<country>Germany</country>
<state>any</state>
<description>New Year</description>
</holiday>
<holiday>
<day>24</day>
<month>12</month>
<year>any</year>
<country>Germany</country>
<state>any</state>
<description>Christmas</description>
</holiday>
</holidays>
Training
require_once 'ANN/Loader.php';
try
{
$objNetwork = ANN_Network::loadFromFile('icecreams.dat');
}
catch(Exception $e)
{
print 'Creating a new one...';
$objNetwork = new ANN_Network(2, 8, 1);
$objDateInput = new ANN_DateInputs('2010-01-03'); // As of ANN 2.1.3
$objTemperature = new ANN_InputValue(-15, 50); // Temperature in Celsius
$objTemperature->saveToFile('input_temperature.dat');
$objHumidity = new ANN_InputValue(0, 100); // Humidity percentage
$objHumidity->saveToFile('input_humidity.dat');
$objIcecream = new ANN_OutputValue(0, 300); // Quantity of sold ice-creams
$objIcecream->saveToFile('output_quantity.dat');
$objValues = new ANN_Values;
$objValues->train()
->input(
$objTemperature->getInputValue(20),
$objHumidity->getInputValue(10),
$objDateInput->getHolidaysInWeek() // As of ANN 2.1.3
)
->output(
$objIcecream->getOutputValue(20)
)
->input(
$objTemperature->getInputValue(30),
$objHumidity->getInputValue(40),
$objDateInput->getHolidaysInWeek()
)
->output(
$objIcecream->getOutputValue(90)
)
->input(
$objTemperature->getInputValue(32),
$objHumidity->getInputValue(30),
$objDateInput->getHolidaysInWeek()
)
->output(
$objIcecream->getOutputValue(70)
)
->input(
$objTemperature->getInputValue(33),
$objHumidity->getInputValue(20),
$objDateInput->getHolidaysInWeek()
)
->output(
$objIcecream->getOutputValue(75)
);
$objValues->saveToFile('values_icecreams.dat');
unset($objValues);
unset($objTemperature);
unset($objHumidity);
unset($objIcecream);
}
try
{
$objTemperature = ANN_InputValue::loadFromFile('input_temperature.dat'); // Temperature in Celsius
$objHumidity = ANN_InputValue::loadFromFile('input_humidity.dat'); // Humidity percentage
$objIcecream = ANN_OutputValue::loadFromFile('output_quantity.dat'); // Quantity of sold ice-creams
}
catch(Exception $e)
{
die('Error loading value objects');
}
try
{
$objValues = ANN_Values::loadFromFile('values_icecreams.dat');
}
catch(Exception $e)
{
die('Loading of values failed');
}
$objNetwork->setValues($objValues); // As of ANN 2.0.6
$boolTrained = $objNetwork->train();
print ($boolTrained)
? 'Network trained'
: 'Network not trained completely. Please re-run the script';
$objNetwork->saveToFile('icecreams.dat');
$objNetwork->printNetwork();