Logical XOR function: Difference between revisions
From Artificial Neural Network for PHP
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== FAQ == |
|||
For information about dat-files have a view to the [[FAQ]] page. |
|||
== Training == |
== Training == |
||
<source lang="php"> |
<source lang="php"> |
||
require_once 'ANN/ |
require_once 'ANN/Loader.php'; |
||
use ANN\Network; |
|||
use ANN\Values; |
|||
try |
try |
||
{ |
{ |
||
$objNetwork = |
$objNetwork = Network::loadFromFile('xor.dat'); |
||
} |
} |
||
catch(Exception $e) |
catch(Exception $e) |
||
Line 12: | Line 20: | ||
print 'Creating a new one...'; |
print 'Creating a new one...'; |
||
$objNetwork = new |
$objNetwork = new Network; |
||
⚫ | |||
$objValues = new Values; |
|||
$arrInputs = array( |
|||
array(0, 0), |
|||
array(0, 1), |
|||
array(1, 0), |
|||
array(1, 1) |
|||
); |
|||
$objValues->train() |
|||
$arrOutputs = array( |
|||
->input(0,0)->output(0) |
|||
array(0), |
|||
->input(0,1)->output(1) |
|||
array(1), |
|||
->input(1,0)->output(1) |
|||
array(1), |
|||
->input(1,1)->output(0); |
|||
array(0) |
|||
); |
|||
$objValues->saveToFile('values_xor.dat'); |
|||
⚫ | |||
unset($objValues); |
|||
⚫ | |||
try |
|||
$objNetwork->setOutputs($arrOutputs); |
|||
{ |
|||
$objValues = Values::loadFromFile('values_xor.dat'); |
|||
} |
|||
catch(Exception $e) |
|||
{ |
|||
die('Loading of values failed'); |
|||
} |
|||
$objNetwork-> |
$objNetwork->setValues($objValues); // to be called as of version 2.0.6 |
||
$boolTrained = $objNetwork->train(); |
|||
print ($boolTrained) |
|||
? 'Network trained' |
|||
: 'Network not trained completely. Please re-run the script'; |
|||
$objNetwork->saveToFile('xor.dat'); |
$objNetwork->saveToFile('xor.dat'); |
||
⚫ | |||
</source> |
</source> |
||
Line 41: | Line 60: | ||
<source lang="php"> |
<source lang="php"> |
||
require_once 'ANN/ |
require_once 'ANN/Loader.php'; |
||
use ANN\Network; |
|||
use ANN\Values; |
|||
try |
try |
||
{ |
{ |
||
$objNetwork = |
$objNetwork = Network::loadFromFile('xor.dat'); |
||
} |
} |
||
catch(Exception $e) |
catch(Exception $e) |
||
Line 52: | Line 74: | ||
} |
} |
||
try |
|||
$arrInputs = array( |
|||
{ |
|||
array(0, 0), |
|||
$objValues = Values::loadFromFile('values_xor.dat'); |
|||
array(0, 1), |
|||
} |
|||
array(1, 0), |
|||
catch(Exception $e) |
|||
array(1, 1) |
|||
{ |
|||
); |
|||
die('Loading of values failed'); |
|||
} |
|||
$objValues->input(0, 1) // input values appending the loaded ones |
|||
->input(1, 1) |
|||
->input(1, 0) |
|||
->input(0, 0) |
|||
->input(0, 1) |
|||
->input(1, 1); |
|||
$objNetwork-> |
$objNetwork->setValues($objValues); |
||
print_r($objNetwork->getOutputs()); |
print_r($objNetwork->getOutputs()); |
Latest revision as of 11:29, 1 June 2011
FAQ
For information about dat-files have a view to the FAQ page.
Training
require_once 'ANN/Loader.php';
use ANN\Network;
use ANN\Values;
try
{
$objNetwork = Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
print 'Creating a new one...';
$objNetwork = new Network;
$objValues = new Values;
$objValues->train()
->input(0,0)->output(0)
->input(0,1)->output(1)
->input(1,0)->output(1)
->input(1,1)->output(0);
$objValues->saveToFile('values_xor.dat');
unset($objValues);
}
try
{
$objValues = Values::loadFromFile('values_xor.dat');
}
catch(Exception $e)
{
die('Loading of values failed');
}
$objNetwork->setValues($objValues); // to be called as of version 2.0.6
$boolTrained = $objNetwork->train();
print ($boolTrained)
? 'Network trained'
: 'Network not trained completely. Please re-run the script';
$objNetwork->saveToFile('xor.dat');
$objNetwork->printNetwork();
Using trained network
require_once 'ANN/Loader.php';
use ANN\Network;
use ANN\Values;
try
{
$objNetwork = Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
die('Network not found');
}
try
{
$objValues = Values::loadFromFile('values_xor.dat');
}
catch(Exception $e)
{
die('Loading of values failed');
}
$objValues->input(0, 1) // input values appending the loaded ones
->input(1, 1)
->input(1, 0)
->input(0, 0)
->input(0, 1)
->input(1, 1);
$objNetwork->setValues($objValues);
print_r($objNetwork->getOutputs());