Logical XOR function: Difference between revisions

From Artificial Neural Network for PHP
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
== FAQ ==

For information about dat-files have a view to the [[FAQ]] page.

== Training ==
== Training ==


<source lang="php">
<source lang="php">
<?php
require_once 'ANN/ANN_Loader.php';
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;


try
try
{
{
$network = ANN_Network::loadFromFile('xor.dat');
$objNetwork = Network::loadFromFile('xor.dat');
} catch (Exception $e)
}
catch(Exception $e)
{
{
print 'Creating a new one...';
$objNetwork = new Network();
$network = new ANN_Network;
}


$objValues = new Values();
$inputs = array(
array(0, 0),
array(0, 1),
array(1, 0),
array(1, 1)
);


$objValues->train()
$outputs = array(
->input(0, 0)
array(0),
->output(0)
array(1),
->input(0, 1)
array(1),
->output(1)
array(0)
->input(1, 0)
);
->output(1)
->input(1, 1)
->output(0);


$objValues->saveToFile('values_xor.dat');
$network->setInputs($inputs);
}


try
$network->setOutputs($outputs);
{
$objValues = Values::loadFromFile('values_xor.dat');
}
catch (Exception $e)
{
die('Loading of values failed');
}


$objNetwork->setValues($objValues);
$network->train();


$boolTrained = $objNetwork->train();
$network->saveToFile('xor.dat');

print ($boolTrained) ? 'Network trained' : 'Network not trained completely. Please re-run the script';

$objNetwork->saveToFile('xor.dat');
</source>
</source>


Line 41: Line 55:


<source lang="php">
<source lang="php">
<?php
require_once 'ANN/ANN_Network.php';
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
$objNetwork = Network::loadFromFile('xor.dat');
}
catch (Exception $e)
{
die('Network not found');
}


try
try
{
{
$network = ANN_Network::loadFromFile('xor.dat');
$objValues = Values::loadFromFile('values_xor.dat');
}
}
catch(Exception $e)
catch (Exception $e)
{
{
die('Network not found');
die('Loading of values failed');
}
}


$objValues->input(0, 1)
$inputs = array(
-> // input values appending the loaded ones
array(0, 0),
array(0, 1),
input(1, 1)
array(1, 0),
->input(1, 0)
array(1, 1)
->input(0, 0)
->input(0, 1)
);
->input(1, 1);


$objNetwork->setValues($objValues);
$network->setInputs($inputs);


print_r($network->getOutputs());
print_r($objNetwork->getOutputs());
</source>
</source>

Latest revision as of 12:04, 4 October 2025

FAQ

For information about dat-files have a view to the FAQ page.

Training

<?php
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
    $objNetwork = Network::loadFromFile('xor.dat');
} catch (Exception $e)
{
    $objNetwork = new Network();

    $objValues = new Values();

    $objValues->train()
        ->input(0, 0)
        ->output(0)
        ->input(0, 1)
        ->output(1)
        ->input(1, 0)
        ->output(1)
        ->input(1, 1)
        ->output(0);

    $objValues->saveToFile('values_xor.dat');
}

try
{
    $objValues = Values::loadFromFile('values_xor.dat');
}
catch (Exception $e)
{
    die('Loading of values failed');
}

$objNetwork->setValues($objValues);

$boolTrained = $objNetwork->train();

print ($boolTrained) ? 'Network trained' : 'Network not trained completely. Please re-run the script';

$objNetwork->saveToFile('xor.dat');

Using trained network

<?php
require_once 'ANN/Loader.php';

use ANN\Network;
use ANN\Values;

try
{
    $objNetwork = Network::loadFromFile('xor.dat');
}
catch (Exception $e)
{
    die('Network not found');
}

try
{
    $objValues = Values::loadFromFile('values_xor.dat');
}
catch (Exception $e)
{
    die('Loading of values failed');
}

$objValues->input(0, 1)
    -> // input values appending the loaded ones
input(1, 1)
    ->input(1, 0)
    ->input(0, 0)
    ->input(0, 1)
    ->input(1, 1);

$objNetwork->setValues($objValues);

print_r($objNetwork->getOutputs());