Logical XOR function: Difference between revisions
From Artificial Neural Network for PHP
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
= Logical XOR function = |
|||
== Training == |
== Training == |
||
Line 12: | Line 10: | ||
catch(Exception $e) |
catch(Exception $e) |
||
{ |
{ |
||
print " |
print "Creating a new one..."; |
||
$network = new ANN_Network; |
$network = new ANN_Network; |
||
Line 51: | Line 49: | ||
catch(Exception $e) |
catch(Exception $e) |
||
{ |
{ |
||
print " |
print "Network not found."; |
||
} |
} |
||
Revision as of 10:05, 21 December 2007
Training
require_once 'ANN/ANN_Network.php';
try
{
$network = ANN_Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
print "Creating a new one...";
$network = new ANN_Network;
}
$inputs = array(
array(0, 0),
array(0, 1),
array(1, 0),
array(1, 1)
);
$outputs = array(
array(0),
array(1),
array(1),
array(0)
);
$network->setInputs($inputs);
$network->setOutputs($outputs);
$network->train();
$network->saveToFile('xor.dat');
Using a trained network
require_once('ANN/ANN_Network.php');
try
{
$network = ANN_Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
print "Network not found.";
}
$inputs = array(
array(0, 0),
array(0, 1),
array(1, 0),
array(1, 1)
);
$network->setInputs($inputs);
print_r($network->getOutputs());