Logging network weights: Difference between revisions
From Artificial Neural Network for PHP
Line 3: | Line 3: | ||
<source lang="php"> |
<source lang="php"> |
||
require_once 'ANN/Loader.php'; |
require_once 'ANN/Loader.php'; |
||
use ANN\Network; |
|||
use ANN\Values; |
|||
try |
try |
||
{ |
{ |
||
$objNetwork = |
$objNetwork = Network::loadFromFile('xor.dat'); |
||
} |
} |
||
catch(Exception $e) |
catch(Exception $e) |
||
Line 12: | Line 15: | ||
print 'Creating a new one...'; |
print 'Creating a new one...'; |
||
$objNetwork = new |
$objNetwork = new Network; |
||
$objValues = new |
$objValues = new Values; |
||
$objValues->train() |
$objValues->train() |
||
Line 29: | Line 32: | ||
try |
try |
||
{ |
{ |
||
$objValues = |
$objValues = Values::loadFromFile('values_xor.dat'); |
||
} |
} |
||
catch(Exception $e) |
catch(Exception $e) |
Latest revision as of 12:13, 1 June 2011
Logging network weights while training
require_once 'ANN/Loader.php';
use ANN\Network;
use ANN\Values;
try
{
$objNetwork = Network::loadFromFile('xor.dat');
}
catch(Exception $e)
{
print 'Creating a new one...';
$objNetwork = new Network;
$objValues = new Values;
$objValues->train()
->input(0,0)->output(0)
->input(0,1)->output(1)
->input(1,0)->output(1)
->input(1,1)->output(0);
$objValues->saveToFile('values_xor.dat');
unset($objValues);
}
try
{
$objValues = Values::loadFromFile('values_xor.dat');
}
catch(Exception $e)
{
die('Loading of values failed');
}
$objNetwork->setValues($objValues); // to be called as of version 2.0.6
$objNetwork->logWeightsToFile('network.csv'); // Start logging
$objNetwork->train();
$objNetwork->saveToFile('xor.dat');